等腰三角形的定义和性质,新旧知识的联系?
定义:有两条边相等的三角形叫做等腰三角形,其中相等的两条边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,腰和底的夹角叫做底角。
性质:等腰三角形的两个底角相等。等腰三角形顶角的平分线、底边上的高和底边上的中线互相重合(三线合一)。
新旧知识联系:三线合一的性质主要联系到了角平分线的性质和垂直平分线的性质。
等腰三角形的高与底边的关系
1、等腰三角形底边的高和底边上的中线是重合关系,相当于一条线。等腰三角形,指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
2、等腰三角形的两个底角度数相等(简写成“等边对等角”)。等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。如下图所示,AE是等腰三角形ABC底边BC上的高、也是底边BC上的中线,还是顶角∠BAC的角平分线。
等边和等腰三角形有什么区别
等边和等腰三角形的区别是:三个角的度数不同、三边关系不同。等边三道角形的三条边相等,等边三角形的两腰长相等,第三边小于两边专之和,大于0;等边三角形的三个内角为60度,等腰三角形的两腰所对角相等,顶角=180-2×底角。
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
30度等腰三角形底边怎么算
30度等腰三角形底边是我们作条高,利用30度直角三角形的特点,求出半条底边,因为是等腰三角形,所以乘2,就可以算出来了,等腰三角形(isoscelestriangle),是指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。
等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。
等腰三角形的底角是什么
等腰三角形的底角是什么:等腰三角形分顶角和底角,两个相等的角就是底角,那么这个就是底角的顶点。
有两边相等,且底角相等的三角形叫等腰三角形(等边三角形),相等的两个边称为这个三角形的腰。在同一三角形中,有两条边相等的三角形是等腰三角形。在同一三角形中,有两个底角(底角指三角形最下面的两个角)相等的三角形是等腰三角形。
等腰三角形有几条高
等腰三角形有三条高。等腰三角形是指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等。
三角形是由同一平面内不在同一直线上的三条线段首尾顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形),按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
等腰三角形有几个顶角
等腰三角形有一个顶角。等腰三角形的顶角是80度,它的一个底角是50度。等腰三角形的两个底角度数相等,且三角形的内角和为180度。所以底角等于(180-80)/2=50度。
等腰三角形(isoscelestriangle),是指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。
等腰三角形三线合一是什么意思
三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合(前提一定是在等腰三角形中,其它三角形不适用)。同时,“三线合一”又是一种判定等腰三角形的方法。
已知:△ABC为等腰三角形,AB=AC,AD为中线。求证:AD⊥BC,∠BAD=∠CAD
在△ABD和△ACD中:
BD=DC(等腰三角形的中线平分对应的边)
AB=AC(等腰三角形的性质)
AD=AD(公共边)
∴△ADB≌△ADC(SSS)
可得∠BAD=∠CAD,∠ADB=∠ADC(全等三角形对应角相等)
∵∠ADB+∠ADC=∠BDC(已证),且∠BDC=180°(平角定义)
∴∠ADB=∠ADC=90°(等量代换)
∴AD⊥BC
得证
等腰三角形的腰和底边的关系
等腰三角形底边上的垂直平分线到两条腰的距离相等。等腰三角形的一腰上的高与底边的夹角等于顶角的一半。等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
判定的方式
定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,还有如下判定的方式:
在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。
在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。
显然,以上三条定理是“三线合一”的逆定理。
有两条角平分线(或中线,或高)相等的三角形是等腰三角形。
等腰三角形是轴对称图形吗
等腰三角形是轴对称图形,其对称轴是顶角平分线、底边上的中线、底边上的高所在的直线。等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
等腰三角形是指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角,等腰三角形的两个底角度数相等。
等腰三角形和等边三角形的关系
等边三角形是特殊的等腰三角形,所以等腰三角形包含等边三角形,等边三角形属于等腰三角形,是特殊和一般的关系。
等腰三角形(isoscelestriangle),指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
等边三角形(又称正三边形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。
扩展资料:
等边三角形的性质
(1)每个角都为60°,三角形三内角和等于180°。
(2)三角形的一个外角等于和它不相邻的两个内角之和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
(4)三角形两边之和大于第三边,两边之差小于第三边。
(5)在同一个三角形内,大边对大角,大角对大边。